Automatic Chain-of-Thought¶
An implementation of the automatic chain-of-thought (CoT) prompting strategy from this paper.
cogitator.strategies.auto_cot.AutoCoT
¶
Implements the Automatic Chain-of-Thought (Auto-CoT) prompting strategy.
Auto-CoT aims to automatically construct demonstrations for few-shot CoT prompting by clustering questions and selecting diverse examples, then generating CoT reasoning for them using zero-shot prompts.
Reference
Zhang et al. (2022) "Automatic Chain of Thought Prompting in Large Language Models". https://arxiv.org/abs/2210.03493
Source code in cogitator/strategies/auto_cot.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
|
__init__(llm, n_demos=8, max_q_tokens=60, max_steps=5, *, prompt_template="Let's think step by step.", max_retries=2, max_tokens=None, rand_seed=None, embedder=None, clusterer=None)
¶
Initializes the AutoCoT strategy handler.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
llm
|
BaseLLM
|
The language model instance to use for generation. |
required |
n_demos
|
int
|
The desired number of demonstrations to generate. |
8
|
max_q_tokens
|
int
|
Maximum approximate token length for questions selected as demos. |
60
|
max_steps
|
int
|
Maximum number of reasoning steps allowed in a generated demo CoT. |
5
|
prompt_template
|
str
|
The zero-shot prompt template used to generate CoT reasoning. |
"Let's think step by step."
|
max_retries
|
int
|
Maximum number of retries for generating a CoT demo if LLM fails. |
2
|
max_tokens
|
Optional[int]
|
Maximum tokens for LLM generation calls (demos and final answer). |
None
|
rand_seed
|
Optional[int]
|
Base random seed for clustering and LLM seeding. LLM calls will use variations of this seed. |
None
|
embedder
|
Optional[BaseEmbedder]
|
The embedding model instance. Defaults to SentenceTransformerEmbedder. |
None
|
clusterer
|
Optional[BaseClusterer]
|
The clustering algorithm instance. Defaults to KMeansClusterer. |
None
|
Source code in cogitator/strategies/auto_cot.py
fit(questions)
¶
Builds the demonstration pool using the Auto-CoT process.
This involves embedding questions, clustering them, selecting diverse representatives, generating CoT reasoning for them using varied seeds, and filtering based on length and step count criteria.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
questions
|
List[str]
|
A list of questions to build demonstrations from. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If the number of questions is lower than |
RuntimeError
|
If embedding or clustering fails, or if no valid demos can be generated. |
Source code in cogitator/strategies/auto_cot.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
fit_async(questions, semaphore=None)
async
¶
Asynchronously builds the demonstration pool using the Auto-CoT process.
Similar to fit
, but performs LLM generation calls asynchronously
using varied seeds.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
questions
|
List[str]
|
A list of questions to build demonstrations from. |
required |
semaphore
|
Optional[Semaphore]
|
An optional asyncio.Semaphore to limit concurrent LLM calls. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If the number of questions is lower than |
RuntimeError
|
If embedding or clustering fails, or if no valid demos can be generated. |
Source code in cogitator/strategies/auto_cot.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
|
run(test_q, **kwargs)
¶
Runs the Auto-CoT strategy for a given test question.
Constructs a prompt using the generated demonstrations and the test question, then calls the LLM to generate the final answer. The base seed is used for this final generation unless overridden in kwargs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_q
|
str
|
The test question to answer. |
required |
**kwargs
|
Any
|
Additional arguments passed to the LLM generation call, potentially overriding default seed, max_tokens, etc. |
{}
|
Returns:
Type | Description |
---|---|
str
|
The LLM-generated answer string. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If |
Source code in cogitator/strategies/auto_cot.py
run_async(test_q, **kwargs)
async
¶
Asynchronously runs the Auto-CoT strategy for a given test question.
Constructs a prompt using the generated demonstrations and the test question, then calls the LLM asynchronously to generate the final answer. The base seed is used for this final generation unless overridden in kwargs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_q
|
str
|
The test question to answer. |
required |
**kwargs
|
Any
|
Additional arguments passed to the async LLM generation call, potentially overriding default seed, max_tokens, etc. |
{}
|
Returns:
Type | Description |
---|---|
str
|
The LLM-generated answer string. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If |