Self-Consistency Prompting¶
An implementation of the self-consistency prompting strategy from this paper.
cogitator.strategies.sc_cot.SelfConsistency
¶
Implements the Self-Consistency Chain-of-Thought (SC-CoT) strategy.
Self-Consistency improves CoT prompting by generating multiple diverse reasoning paths (using sampling with temperature > 0) and then selecting the most consistent answer among the paths via majority voting.
Reference
Wang et al. (v4; 2023) "Self-Consistency Improves Chain of Thought Reasoning in Language Models". https://arxiv.org/abs/2203.11171
Source code in cogitator/strategies/sc_cot.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
|
__init__(llm, n_samples=10, temperature=0.8, max_tokens=256, stop=None, internal_extraction_format='heuristic', answer_extraction_prompt=None, seed=None, **gen_kwargs)
¶
Initializes the SelfConsistency strategy handler.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
llm
|
BaseLLM
|
The language model instance. |
required |
n_samples
|
int
|
The number of reasoning paths (samples) to generate. |
10
|
temperature
|
float
|
Sampling temperature for generating diverse paths. Should be > 0. |
0.8
|
max_tokens
|
int
|
Maximum tokens for each generated reasoning path. |
256
|
stop
|
Optional[List[str]]
|
Optional stop sequences for LLM generation. |
None
|
internal_extraction_format
|
Literal['heuristic', 'json']
|
Method for extracting the final answer from each CoT path ('heuristic' or 'json'). |
'heuristic'
|
answer_extraction_prompt
|
Optional[str]
|
Prompt template used only if |
None
|
seed
|
Optional[int]
|
Base random seed for LLM sampling (each sample may use seed + i). |
None
|
**gen_kwargs
|
Any
|
Additional default keyword arguments for LLM generation calls. |
{}
|
Source code in cogitator/strategies/sc_cot.py
extract_answer(cot, **kwargs)
¶
Extracts the final answer from a CoT string based on the configured method.
Delegates to either _extract_answer_heuristic
or _extract_answer_json
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cot
|
str
|
The Chain-of-Thought reasoning string. |
required |
**kwargs
|
Any
|
Arguments passed to the underlying extraction method (if JSON). |
{}
|
Returns:
Type | Description |
---|---|
str
|
The extracted answer string. |
Source code in cogitator/strategies/sc_cot.py
extract_answer_async(cot, **kwargs)
async
¶
Asynchronously extracts the final answer based on the configured method.
Delegates to _extract_answer_heuristic
or _extract_answer_json_async
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cot
|
str
|
The Chain-of-Thought reasoning string. |
required |
**kwargs
|
Any
|
Arguments passed to the underlying async extraction method (if JSON). |
{}
|
Returns:
Type | Description |
---|---|
str
|
The extracted answer string. |
Source code in cogitator/strategies/sc_cot.py
run(prompt, **kwargs)
¶
Executes the Self-Consistency strategy.
Generates n_samples
reasoning paths using the LLM with the specified
temperature. Extracts the final answer from each path and returns the
most frequent answer (majority vote).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
str
|
The input prompt for the LLM. |
required |
**kwargs
|
Any
|
Additional arguments passed to the LLM generation and answer extraction calls. |
{}
|
Returns:
Type | Description |
---|---|
str
|
The most consistent answer string among the generated paths, or an |
str
|
empty string if no valid answers are generated. |
Source code in cogitator/strategies/sc_cot.py
run_async(prompt, semaphore=None, **kwargs)
async
¶
Asynchronously executes the Self-Consistency strategy.
Generates n_samples
reasoning paths concurrently using async LLM calls.
Extracts answers asynchronously and returns the majority vote answer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
str
|
The input prompt for the LLM. |
required |
semaphore
|
Optional[Semaphore]
|
Optional asyncio.Semaphore to limit concurrent LLM calls. |
None
|
**kwargs
|
Any
|
Additional arguments passed to the async LLM generation and answer extraction calls. |
{}
|
Returns:
Type | Description |
---|---|
str
|
The most consistent answer string, or an empty string if none are generated. |
Source code in cogitator/strategies/sc_cot.py
run_stream(prompt)
¶
run_stream_async(prompt)
async
¶
Streaming is not supported for Self-Consistency.